

Advanced Pacting

Beth Skurrie
@bethesque

Topics

● Writing consumer tests

● Verifying Pacts

● Using tags

● CI/CD

● Questions

Writing consumer tests

Writing good consumer tests

● Understand the difference between contract tests and
functional tests

● Getting the scope right

Functional vs contract tests

● Contract tests focus only on the messages (request and
response)
○ When I send

■ POST /widgets
■ Request body containing widget properties

○ I receive
■ 200 OK
■ Location header with URL of new widget
■ Response body containing widget properties

● Functional tests also check for side effects
○ All of the above checks
○ Plus: is the widget stored correctly in the repository?

● Could you “hardcode” a provider implementation that passes
the contract tests, but actually doesn’t persist any data?

POP QUIZ

POP QUIZ

● Could you “hardcode” a provider implementation that passes
the contract tests, but actually doesn’t persist any data?

YES!!!!

● What stops us doing this?

The functional tests in the provider’s own codebase

Contract tests aren’t designed to operate
alone

It’s not the job of the consumer to be a test
harness for the provider

It’s not the job of the consumer to be
a test harness for the provider

Is there duplication between functional
and contract tests?
● Yes, but not entirely
● A contract test only covers the attributes of the request and

response that a particular consumer cares about
● By design it excludes things that the consumer does not care

about
● Functional test covers all the functionality available to all the

consumers

Bad example - functional test

When "creating a user with a username with 21 characters"
 POST /users { "username": "thisisalooongusername" }
Then
 Expected Response is 400 Bad Request

Expected Response body is { "error": "username cannot be
more than 20 characters" }

■ Focusses on the implementation
■ Brittle
■ Tempts you to try and write a test for every scenario

Good example - contract test

When "creating a user with invalid data"
 POST /users { "username": "thisisalooongusername" }
Then
 Expected Response is 400 Bad Request

Expected Response body is { "error": Pact.like(“some error
message”) }

■ Focuses on the shape of the document
■ Flexible
■ Maintainable

A good contract test aims to expose:

■ bugs in the consumer code
■ misunderstanding from the consumer about end-points or

payload
■ breaking changes by the provider on end-points or payload

Scope, scope, scope

Why not include the UI/business logic
layers?
● Maintainability

○ Using Pact to test UI concerns causes interactions with minor
variations to be added to the contact that don’t meaningfully
increase test coverage, but do increase the maintenance of the
provider verifications.

Provider API Client Responsibilities

● Converts back and forth between the business domain classes
and concepts of the consumer and the HTTP requests and
responses required to communicate with the provider

● Abstracts the HTTP-ishness of the provider
● Eg. 200 returns an object, 404 returns null, 401 raises a

validation error

Options for “top to bottom” consumer tests

● Use the pact generated by the unit tests along with a pact stub
server.

● Use a separate HTTP mock library and use shared fixtures
between both the pact tests and the “top to bottom” tests.

● Use a separate HTTP mock library and parse the generated
pact to initialise the mock.

● You should be able to construct a proper sentence using the
description and the provider state(s).
○ Given an alligator named Mary exists upon receiving a request to

retrieve an alligator by name the provider will respond with …
● Think of the readers of the generated documentation and try

to use BDD style notation to describe the business actions
rather than describing the HTTP mechanisms where possible.
○ “a request to activate a user” rather than “a request to set active

to true”

Other tips

Other tips

● Only use deterministic data - more on this later
● Reuse provider states where it makes sense, to ease the

maintenance burden on the provider team.
● Make your response expectations as loose as possible

○ eg. {“bar”: Pact.like(“foo”) } rather than {“bar”:
“foo”}

Writing consumer tests -
Question time

Verifying pacts

Verifying pacts

● Where to stub
● Handling authentication and authorization

Scope of a provider verification test

Stubbing
● Should be able to run on your local development machine
● Always stub external services
● Stub whichever layer(s) of your provider makes sense for you

○ Balance
■ Speed of feedback
■ Accuracy of feedback
■ Maintainability of tests

○ Microservice with SQLite database? Might not need to stub
anything

○ Heavyweight proprietary database? Maybe stub DAO.
● Beware of stubbing business logic though

○ business logic can affect the response given, and hence, make the
verification results unreliable

Be aware!!!

When you stub

● Be aware of the tradeoffs
○ Stubbing improves reliability, but reduces confidence

● Make sure you have a matching “contract” test with the thing
you’re stubbing to make sure you’re stubbing it right.

Handling authentication and authorisation

■ Should authentication and authorization be part of the
contract?

■ No straight answer, it’s about the tradeoffs
■ Yes

● Increase in certainty
● Less to cover in any integrated tests
● Good if the auth code is custom and likely to change

■ No
● Simpler
● If using stable standards, there may be little benefit
● May be more easily covered in e2e tests

Options

■ Ignore auth (test using other types of tests)
■ Stub your auth services (client code or implementation)
■ Use provider states to create real users with matching

credentials
■ Modify the request before sending it using live credentials

(using Pact framework)
● Make sure the credentials you’re replacing “match”, otherwise,

there’s no point in including them in the contract
■ Use your own custom middleware or proxy to modify the

response with live credentials
■ Use a 100 year token!

Required

Communicate
and

collaborate

Verifying Pacts - Question time

Pactflow/Pact Broker

Using tags

Pact Broker BDM - Pact publication

Pact Broker BDM - with verification results

Pact Broker Class diagram

WHAT WE ARE KNOWN FOR

40

Using Tags

● Simple string values

● Belong to pacticipant (application) version resources in the
Pact Broker

● Tell us metadata about the pacticipant version

○ Git branch eg. “master”, “feat/xyz”

○ Deployment stage eg. “test”, “prod”

● To create:
PUT /pacticipants/PACTICIPANT/versions/VERSION/tags/TAG

What are tags?

WHAT WE ARE KNOWN FOR

41

Using Tags

When are tags created?

● During pact publication - this tells us which branch the
pacticipant version (and hence, the pact) was published from

● During verification results publication - this tells us which
branch the pacticipant version(and hence, the verification
results) were published from

● After deployment - this tells us which environment the
application version is deployed to

WHAT WE ARE KNOWN FOR

42

Using Tags

Tagging over time

WHAT WE ARE KNOWN FOR

43

Using Tags

Things to note

● “latest” is not a tag itself (unlike docker tags). It is a dynamically
calculated reference to the actual latest resource.

● Ordering for calculating the “latest” is done by the creation
date of the pacticipant versions, not the tags.
○ If you rollback to a previous prod version, delete the tag on the

undeployed version

● You can think of the the time ordered series of pacticipant
versions that belong to a particular tag as forming a “pseudo
branch”.

What are tags used for?

● Identifying the resources in the Pact Broker that belong to a
given branch or stage.

● Examples

○ The latest production version of Foo
/pacticipants/Foo/latest-version/prod

○ The pact belonging to the latest production version of Foo,
and Bar
/pacts/provider/Foo/consumer/Bar/latest/prod

○ All production versions of a mobile consumer

What does this allow us to do?

1. Ensure we are verifying the right pacts

2. Ensure backwards compatibility

3. Provides a mechanism for introducing changes to pacts

4. Easily ensure safe deployments

1. Ensure the right pacts are verified

● The example used for default provider verification
configurations usually specifies to verify the “overall latest
pact”

● What if the latest pact came from a feature branch?
● Tag with the branch name when you publish pacts
● Configure the provider to verify the “latest master” (or

whatever the name of your main line of development is).

2. Ensure backwards compatibility

● Verifying “latest master” ensures our provider is compatible
with the current consumer code.

● Microservices -> decouple release cycles of consumer and
provider

● Need to ensure provider is compatible with production
consumer as well as latest

● Tag with the stage name when you deploy application
● Configure the provider to verify the latest test/prod pacts as

well as the latest master.

3. Introduce changes without breaking
builds
● If following “consumer driven” pacts, pact is changed before

provider
● This would break provider build
● Do changes on branch of consumer, and tag with branch name

OR do changes with feature toggle and tag with toggle name
● Collaborate with provider team!
● Once feature pact is successfully verified, merge to

master/turn toggle on

4. Easily ensure safe deployments

● Each pact publication is associated with a consumer version
● Each pact verification is associated with a provider version
● The pact publication is linked to the verification results through

the pact (content) version
● There is a many to many relationship between consumer

version and provider version thought pact publication/pact
version/verification results

Quick tangent! Pre-verification

● If pact with same content published multiple times with
different consumer versions:
○ New pact publication resource each time
○ Reuses existing pact version
○ Inherits existing verification results

● This is how pacts are “pre-verified”
● This is why it’s best to use deterministic data

The Matrix

Consumer (Foo)
version

Provider (Bar)
version

Verification
result

11 54 prod. success

12 54 failure

12 55 success

The can-i-deploy CLI

● Queries the matrix to determine if a set of pacticipant versions
can be safely deployed together

○ ie. is there a pact with a successful verification result
between the specified consumer and provider versions

can-i-deploy

53

Consumer (Foo)
version

Provider (Bar)
version

Verification
result

11 54 prod. success

12 54 failure

12 55 success

$ pact-broker can-i-deploy
--pacticipant Foo --version 11
--pacticipant Bar --version 54

can-i-deploy - better

54

Consumer (Foo)
version

Provider (Bar)
version

Verification
result

11 54 prod. success

12 54 failure

12 55 success

$ pact-broker can-i-deploy
--pacticipant Foo --version 11

 --pacticipant Bar --latest prod

can-i-deploy - best

55

Consumer (Foo)
version

Provider (Bar)
version

Verification
result

11 54 prod. success

12 54 failure

12 55 success

$ pact-broker can-i-deploy
--pacticipant Foo --version 11

--to prod

Tagging with feature toggles

● The current Pact Broker workflow best suits branch based
development

● Expects one pact per consumer version, but feature toggles
mean there might be multiple variations of the pact for the
same git sha.

● Conceptually though, these can be thought of as different
versions

Feature toggle flow

● Consumer
○ Create pact with toggles off

■ Consumer version - sha eg. effe8a07
■ Tag with ‘base’

○ Create pact with toggle A on
■ Consumer version sha+toggle_name eg. effe8a07+feat_a
■ Tag with toggle name

● Provider
○ Verify pacts with toggles off

■ Provider version - sha eg. d3092627
■ Tag with ‘base’

○ Verify pacts with toggle B on
■ Provider version - sha+toggle_name eg. d3092627+feat_b

Feature toggle matrix

Consumer (Foo)
version

Provider (Bar)
version

Verification
result

effe8a07 d3092627 success

effe8a07 d3092627+feat_b success

effe8a07+feat_a d3092627 failure

effe8a07+feat_a d3092627+feat_b success

can-i-deploy for deployment
Consumer (Foo)
version

Provider (Bar)
version

Verification
result

effe8a07 d3092627 prod success

effe8a07 d3092627+feat_b success

effe8a07+feat_a d3092627 prod failure

effe8a07+feat_a d3092627+feat_b success

$ pact-broker can-i-deploy
--pacticipant Foo --version effe8a07

--to prod

can-i-deploy for enabling dynamic toggle
Consumer (Foo)
version

Provider (Bar)
version

Verification
result

effe8a07 d3092627 prod success

effe8a07 d3092627+feat_b success

effe8a07+feat_a d3092627 prod failure

effe8a07+feat_a d3092627+feat_b success

$ pact-broker can-i-deploy
--pacticipant Foo --version effe8a07+feat_a

--to prod

CI/CD

The CI/CD/Pact Broker touchpoints

1. Pact changed (CI)
2. Provider changed (CI)
3. Release workflow (CD)

Build pipeline without Pact

Build pipeline with Pact

Build pipeline with Pact - Consumer

Build pipeline with Pact - Provider

For extra brownie points

● Git statuses
● Slack updates

CI/CD - Question Time

Pending pacts - the problem

● Changes to the pact can break the provider’s build

Pending pacts - the solution

● If the pact content has not yet been successfully verified:
○ It is considered “pending”
○ If verification fails, it will not fail the build

● Once it has been successfully verified:
○ It is no longer “pending”
○ Any failure can only be due to a change in the provider
○ If verification fails, it will fail the build

Pending pacts - something to note

● The pending status is calculated based on the tags that will be
applied to the provider version when the results are published

WIP Pacts - the problem

1. Changed pact published with tag ‘feat/foo’
2. ‘Changed contract’ webhook triggers verification - failure
3. Provider implements required changes
4. Provider runs verification for consumer tags ‘master’ and ‘prod’

Unless provider team changes the consumer tags to verify in
the configuration, the ‘feat/foo’ pact won’t get a successful
verification result.

WIP Pacts - the solution

● Changed pact published with tag ‘feat/foo’
● ‘Changed contract’ webhook triggers verification - failure
● Provider implements required changes
● Provider runs verification for consumer tags ‘master’ and ‘prod’

- and also automatically verifies any “work in progress” pacts.

A “work in progress” pact is one which is the latest for its tag, and has
not yet been successfully verified.

